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In this Letter, we propose a convenient method of generat-
ing an optical vortex (OV) array, in which the size and
quantity can be controlled by employing vortex phase
plates, a mode converter, and a spatial light modulator into
a simple optical system. Different sizes of OV arrays are
generated from the superposition of crossed Hermite–
Gaussian (HG) modes possessing equal or unequal orders
and mutually orthogonal circular polarizations. We exper-
imentally and theoretically demonstrate a series of vector
superposed optical fields. Here the sizes of the OV arrays,
as well as the quantities of OVs, are defined in terms of spe-
cific sets of HG bases. Our results indicate that a simple
setup can be used to effectively generate and control
OVs and OV arrays. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.003917

First introduced in 1992 by Allen et al. [1], light with orbital
angular momentum (OAM), also called the Laguerre–Gaussian
(LG) mode, possesses an OAM of lℏ per photon. Its twisted
phase wavefront is a manifestation of the azimuthal phase term
in its wavefunction, while the phase singularities along the
beam axis are defined as the optical vortices (OVs). Thus,
OAM light is attractive to numerous studies such as optical
cryptography [2,3], optical tweezers [4,5], and optical testing
[6]. In general, there are several direct approaches to generate
the OAM light: these include the use of spatial light modulators
[7–9], laser resonators [10,11], and spiral phase plates [12,13].
Mode converters [14], on the other hand, provide a passive way
to generate OAM light by transforming Hermite–Gaussian
(HG) modes into LG modes. In recent years, the vector
OAM beam has also attracted much attention in the fields
of optical communication [15–17] and optical entanglement
[18,19] due to an extra degree of freedom provided by its
space-inhomogeneous polarization. Common methods of gen-
erating vector beams include a Sagnac or a Mach–Zehnder in-
terferometric configuration, among others [20]; however,
recently, more convenient and highly efficient generation proc-
esses have already been used [21]. Moreover, a metasurface,
called the q-plate [22,23] or vortex phase plate (VPP), provides

an extra convenient way of generating and realizing vector
OAM beams [24].

In this Letter, we propose a convenient and powerful
method to produce and control the OV array of the vector
superposed optical field, which is composed of different orders
of crossed HG bases with opposite helicity of circular polari-
zation. The VPP, which does not require a voltage, is used
to produce the vector LG beam from an incident linearly po-
larized light. This vector beam is composed of two opposite
orders of the LG beam with orthogonal circular polarization.
Meanwhile, the bases can be transformed from LG beams into
crossed HG beams with orthogonal circular polarization by us-
ing a mode converter. The SLM provides an extra degree of
freedom to increase and control the order of the bases in
the vector superposed optical field, which can induce OVs
of different sizes and quantities. The position of each OV
has been calculated, and the variable size of the OV array
has also been discussed in calculations. All experimental results
are consistent with the theoretical analysis.

VPPs are made up of a layer of liquid crystal film which is
sandwiched by two glasses. The fast-axis orientation distribu-
tion of the liquid crystal can be described by the relation:
α�r,ϕ� � m × ϕ� α0, where r is the radial coordinate, ϕ is
the azimuthal coordinate, and α0 is a constant angle specifying
the initial orientation of the liquid crystal along the x-axis. The
parameter m determines the order of the VPP and is related to
the topological charge of the LG beam, as well as the distribu-
tion of its space-inhomogeneous polarization. The LG mode of
topological charge m (−m) with the right (left) circular polari-
zation can be generated when a left (right) circularly polarized
light impinged into the VPP. The transformational relation of
the above system can be written as

jEouti � eimϕjRihLjE ini � e−imϕjLihRjE ini: (1)

Furthermore, when the incident light is horizontally (linear)
polarized (jH i � 1∕

ffiffiffi

2
p �ψ �LG�

0,0 jRi � ψ �LG�
0,0 jLi�, Eq. (1) can

be rewritten as

jEouti � 1∕
ffiffiffi

2
p

�ψ �LG�
0,−m jLi � ψ �LG�

0,m jRi�, (2)

where ψ �LG�
p,l represents the LG mode with radial index p and

topological charge l, and the parameter m corresponds to the
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order of the VPP. Thus, vector LG beams can be decomposed
into two bases, ψ �LG�

0,−m jLi and ψ �LG�
0,m jRi. In this experiment,

VPPs with m � 1 and 2 are used. To visually distinguish
the bases of the LG modes generated from the VPP of different
orders, a mode converter is applied to transform the transverse
laser mode from LG modes into HG modes. A mode converter
is composed of two identical cylindrical lenses with focal length
f , separated by

ffiffiffi

2
p

f . The transformational relation between
ψ �HG�
m,n and ψ �LG�

p,l is stated by the equations p � min�m, n� and
l � n − m. Allen et al. [25] reported a matrix formulation for
light beams possessing spin and OAM. According to the con-
cept, an LG mode can be transformed into a single HG mode,
if the axis of the mode converter is rotated at an angle of 45° or
−45°. On the other hand, Lin et al. [26] declared that crossed
HGmodes possess various extra relative phase shifts δ when the
mode converter is rotated at different angles. Figures 1(a) and
1(b) are an experimental setup, which shows a diode-pumped
solid-state laser, with a wavelength of 532 nm and output
power of 20 mW, incident to VPPs of m � 1 and 2. The setup
also includes a mode converter rotated at −45°. According to
Eq. (2), the vector superposed optical field is described by
two LG bases with opposite topological charges and helicities
of circular polarization, and is transformed into two crossed
HG modes with opposite circular polarization when the
mode converter is utilized. By considering the mode transfor-
mation, and using equations jLi � 1∕

ffiffiffi

2
p �x̂ − iŷ� and jRi �

1∕
ffiffiffi

2
p �x̂ � iŷ�, Eq. (2) can be written as

jEouti � 1∕2��ψ �HG�
m,0 � eiδψ �HG�

0,m �x̂ � i�ψ �HG�
0,m − eiδψ �HG�

m,0 �ŷ�,
(3)

where ψ �HG�
m,n represents the HG mode with the order m in the

x-direction and order n in the y-direction; δ represents the extra
relative phase shift generated from the mode converter. Thus,
each combination of HG modes in the x- and y-direction can
easily be comprehended when the circularly polarized bases are
transformed into linearly polarized bases. Figure 2(a) shows the
intensity profile of an incident linearly polarized light impinged
onto a VPP with m � 1 and passed through a mode converter.

Figures 2(a1)–2(a4) indicate the polarization-resolved spatial
intensities of the optical field in Figure 2(a) via the polarizer
(P2), and the results clearly show that the superposed optical
modes possess space-inhomogeneous polarization distribution.
Figures 2(a5) and 2(a6), meanwhile, denote the optical field
that has passed through a combination of a quarter-wave plates
(QWPs) at −45° orientation and a polarizer at 0° and 90° ori-
entations. The results, taken after varying the horizontal and
vertical polarizer orientations, can be described by the beam’s
left and right circular polarization bases, represented as
ψ �HG�
1,0 jLi and ψ �HG�

0,1 jRi, respectively. Figure 2(b) shows the in-
tensity profile of an incident linearly polarized light impinged
onto a VPP with m � 2 and passed through a mode converter.

Figures 2(b1)–2(b4), which display the polarization-
resolved spatial intensities of the optical field in Fig. 2(b),
indicate that the optical field possesses a more complicated
space-inhomogeneous polarization distribution. The two
orthogonal circularly polarized bases ψ �HG�

2,0 jLi and ψ �HG�
0,2 jRi

are analyzed in Figs. 2(b5) and 2(b6) by using a combination
of a QWP and a polarizer. The mode converter induces relative
phase shifts δ � π∕2 and δ � π in the experimental results
shown in Figs. 2(a) and 2(b). The numerical results, calculated
using Eq. (3) and are shown in the third and fourth row of
Fig. 2, have good agreement with the experimental results.
On the other hand, the SLM was employed to generate differ-
ent linearly polarized ψ �LG�

0,l modes of higher topological charge
(l) which were passed through the VPP and the mode con-
verter in order to increase and control the order of the bases
of the vector superposed HG modes. Figure 1(c) depicts the
experimental setup of an incident diode-pumped green laser
directed onto a reflective phase-only 1920 × 1080 pixel SLM
with a pixel pitch of 8 μm. The grating phase pattern of the
desired mode is displayed onto the SLM, and the iris is then
used to select the desired order of the LG mode for the dif-
fracted optical field. The selected LG mode impinged into a
polarizer and a VPP of order m, and the vector superposed
optical field is afterward transformed by the mode converter.
Following Eqs. (2) and (3), the vector superposed optical field
can be represented as

Fig. 1. (a) Experimental setup composed of a polarizer P1 and a
VPP which are applied to generate a vector superposed LG beam.
Different VPPs have different fast-axis orientation distributions.
(b) Mode converter combined with a QWP and a polarizer P2 used
either to transform LG modes into HG modes or to analyze mode
bases and polarization distributions. (c) Combination of a VPP and
a higher-order LG mode generated by a computer-generated hologram
on the SLM; P1 is utilized to manipulate the incident polarization
state. All experimental results are recorded by the CCD.

Fig. 2. (a)–(b) Experimental intensities of an incident linearly po-
larized light that has passed through a VPP with m � 1 and 2, respec-
tively, and a mode converter. (a1)–(a4) and (b1)–(b4) Corresponding
spatial intensities of the optical fields in Figs. 2(a) and 2(b) at different
angles of P2, respectively. (a5)–(a6) and (b5)–(b6) HG bases ψ �HG�

1,0 jLi,
ψ �HG�
0,1 jRi and ψ �HG�

2,0 jLi, and ψ �HG�
0,2 jRi, respectively, analyzed by a

combination of a QWP with a fast axis set at −45° and vertically
and horizontally oriented P2. The white arrows represent the angles
of P2. The theoretical results, shown in the third and fourth rows,
correspond well to the experimental results.
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jEouti � ψ �HG�
jl−mj,0jLi � eiδψ �HG�

0,jl�mjjRi: (4)

The two orthogonal HG bases can be achieved by satisfying the
condition jlj < m. When an incident ψ �LG�

0,l is applied onto the
VPP of order m and onto the mode converter, the order of
the two HG bases is transformed, specifically, from two orthogo-
nal HG modes with the same order m [Eq. (3)] into two
orthogonal HG modes with orders jl − mj and jl� mj.
Figure 3(a) shows a linearly polarized ψ �LG�

0,1 mode applied onto
a VPP of m � 2 and passed through the mode converter.

The intensity profile clearly reveals that the superposed op-
tical field is composed of two HG bases with unequal orders.
Figures 3(a1)–3(a4) presented the polarization-resolved spatial
intensities of the optical beam in Fig. 3(a) via P2. The vector
superposed beam generated from the optical system with a
higher order of LG mode demonstrates the diversity of the
polarization-resolved patterns. Figures 3(a5) and 3(a6) show
that the two orthogonal bases are ψ �HG�

0,3 jRi and ψ �HG�
1,0 jLi;

the superposed HG modes passed through the combination
of a QWP with −45° orientation and a polarizer with vertical
and horizontal orientations. Consequently, the SLM provides
an extra degree of freedom to control the order of the bases of
the two HG modes in the vector superposed optical field. All
experimental results have good agreement with the numerical
results, as shown in the second row of Fig. 3. It is worth men-
tioning that the OV of the m × n array exists in the vector
superposed optical field. The OV is defined as the phase sin-
gularity, where both the real and imaginary parts of the wave-
function are equal to zero. Moreover, the phase singularity
usually generates a null intensity in the intensity profile.
Chu et al. [27] demonstrated an OV array that was generated
from an end-pumped solid-state laser using an unbalanced
Mach–Zehnder interferometer and a rotated Dove prism. A
π∕2 phase difference was provided between the two sub-beams,
contributing an extra i coefficient to the superposed beam.
Furthermore, Lin et al. [26] generated a square OV array from
an end-pumped solid-state laser using a mode converter, which
also provides extra phase shifts. Thus, extra phase shifts are
necessary for generating a laser with an m × n OV array.
According to Eq. (3), the coefficient i is provided by the
imaginary components of the left and right circular polariza-
tions. Following the experimental intensities, the positions
of the OVs do not change, even after varying the polarizer
angles. Figures 4(a)–4(c) demonstrate the phase distributions

corresponding to the experimental intensity results of
Figs. 2(a), 2(b), and 3(a), which are shown in the insets.
The phase diagram is drawn in the Cartesian coordinate with
the origin defined at the center of the diagram. The size of the
OV array and the quantity of OV depend on the bases of the
HG modes. Moreover, by solving the positions of the OVs us-
ing their respective wavefunctions, it was found that an OV is
located at �x, y� � �0, 0� in Fig. 2(a); four OVs are located at
�x, y� � �ω0∕2,ω0∕2�, �ω0∕2, −ω0∕2�, �−ω0∕2,ω0∕2�, and
�−ω0∕2, −ω0∕2� in Fig. 2(b); and three OVs are located at
�x, y� � �0, 0�, �0, ffiffiffi

3
p

ω0∕2� and �0, − ffiffiffi

3
p

ω0∕2� in Fig. 3(a).
The sizes of the OV arrays in Fig. 4(a)–4(c) are 1 × 1, 2 × 2, and
3 × 1, respectively. All solutions are described in terms of ω0,
which is the beam waist of the laser. Furthermore, the size of
the OV array and the quantity of OV can further be controlled
by utilizing different categories of incident transverse laser
modes interacting with a VPP of m � 2 and a mode converter.
First, the simulated linearly polarized standing-wave LG
modes, ψ �LG�

0,4 � ψ �LG�
0,−4 and ψ �LG�

0,10 � ψ �LG�
0,−10, are treated as the

transverse modes, as shown in Figs. 5(a) and 5(b). Following
Eqs. (3) and (4), the calculated intensities of the vector super-
posed optical field in terms of the HG bases and the calculated
phase distributions are shown in Figs. 5. (a′)–5(b′) and 5(a′′)–
5(b′′), respectively. The calculated intensities of the superposed

Fig. 3. (a) Experimental intensity profile of the ψ �LG�
0,1 jH imode that

has passed through a VPP of m � 2 and a mode converter. (a1)–(a4)
Corresponding spatial intensities of the optical field in (a) at different
angles of P2. (a5)–(a6) HG bases, ψ �HG�

1,0 jLi and ψ �HG�
0,3 jRi, respec-

tively, analyzed by a combination of a QWP with a fast axis set at
−45° and vertically and horizontally oriented P2. The white arrows
represent the different angles of P2. The theoretical results, shown
in the second row, are consistent with the experimental results.

Fig. 4. (a) Phase distribution corresponds to the inset and Fig. 2(a);
there is an OV located at �0, 0�. The size of the OV array is 1 × 1.
(b) Phase diagram corresponds to the inset and Fig. 2(b); there are
four OVs which are located at �ω0∕2,ω0∕2�, �−ω0∕2,ω0∕2�,
�ω0∕2, −ω0∕2�, and �−ω0∕2, −ω0∕2�. The size of the OV array is
2 × 2. (c) Phase diagram corresponds to the inset and Fig. 3(a); there
are three OVs which are located at �0, 0�, �0, ffiffiffi

3
p

ω0∕2�, and
�0, − ffiffiffi

3
p

ω0∕2�. The size of the OV array is 3 × 1.

Fig. 5. (a)–(d) Simulated transverse mode of ψ �LG�
0,4 � ψ �LG�

0,−4 ,
ψ �LG�
0,10 � ψ �LG�

0,−10, ψ
�LG�
1,1 and ψ �LG�

3,1 , respectively. All modes interact with
the VPP of m � 2 and with the mode converter. (a′)–(d′) Calculated
superposed optical fields in terms of HG bases corresponding
to (a)–(d). (a′′)–(d′′) Calculated phase distributions for (a′)–(d′), in-
dicating the quantity of OV to be 8, 20, 9, and 33, respectively; the
alignment of the OV array is analyzed as 2 × (2 × 2), 5 × �2 × 2�,
4 × 2� 1 × 1, and 6 × 4� 3 × 3, accordingly.
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optical field can be described by the 1∕2��ψ �LG�
0,6 � ψ �LG�

0,−2 �x̂ �
iŷ�ψ �LG�

0,2 � ψ �LG�
0,−6 �� and 1∕2��ψ �LG�

0,12 � ψ �LG�
8,0 �x̂ � iŷ�ψ �LG�

0,8 �
ψ �LG�
12,0 ��, respectively. In the case of the incident standing-wave

LG modes, the quantity of LG bases has increased from one
LG basis to two LG bases of unequal orders, in each x- or
y-direction, expanding the diversity of OV array. The phase
distributions presented in Figs. 5 (a′′) and 5(b′′) show that
the OV array is composed of many sets of 2 × 2 OV square
arrays (quantity of OV). Specifically, there are two sets of
2 × 2 arrays (8 OVs) in Fig. 5(a′′), and 5 sets of 2 × 2 arrays

)20 OVs) in Fig. 5(b′′). The N sets of 2 × 2 arrays and the
4N OVs are related to the standing-wave LG modes
ψ �LG�
0,N×2 � ψ �LG�

0,−N×2. Furthermore, the alignment of the OV
array and the quantity of OV with respect to the odd-ordered
standing-wave LGmode, ψ �LG�

0,2N�3 � ψ �LG�
0,−2N−3, are described by

5 × 1� N × �2 × 2� and 4N � 5, respectively. Secondly,
higher p order ψ �LG�

p,l mode was used as an incident light to
the VPP with m � 2 and to the mode converter, which pro-
vides an extra degree of freedom to generate two-dimensional
(2D) HG modes. The ψ �LG�

1,1 and ψ �LG�
3,1 modes are treated as

incident transverse modes and are shown in Figs. 5(c) and
5(d). The calculated intensities of the vector superposed
optical field in terms of HG bases are presented in Figs. 5(c′)
and 5(d′), which are described by ψ �HG�

1,4 jRi � ψ �HG�
2,1 jLi and

ψ �HG�
3,6 jRi � ψ �HG�

4,3 jLi, respectively. The results have clearly
demonstrated that the vector superposed field is composed
of two 2D HG bases with orthogonal circular polarization.
Figures 5(c′′) and 5(d′′) display the calculated phase distribu-
tions of the vector superposed fields showing the presence of 9
vortices and 33 vortices, respectively. Moreover, the alignment
of the OV array is analyzed as 4 × 2� 1 × 1 and 6 × 4� 3 × 3,
respectively. Notably, the general expression for the alignment
of OV array and quantity of OV is n1 × m2 � n2 × m1

for ψ �HG�
m1, n1 jRi � ψ �HG�

m2, n2 jLi.
In conclusion, we proposed a convenient and powerful

method to control the size of the OV array and the quantity
of OVs. VPPs of m � 1 and 2 have been utilized to generate
the vector LG beam using an incident linearly polarized light,
which is composed of two LG bases with the orthogonal order
and helicity of circular polarization. To visually distinguish the
superposed optical field of LG bases, a mode converter is ap-
plied to transform the two bases of LG modes into two crossed
HG modes. Moreover, each basis is analyzed by a combination
of QWP and polarizer. The SLM provides an extra degree of
freedom to control the HG bases of vector superposed field.
Furthermore, simulations show that the quantity of OV and
the size of the OV array can be further controlled by utilizing
the standing-wave and higher p order LG modes, respectively.
Finally, the general expressions of the OV array have been pro-
vided to conveniently control the OV array and the quantity of
OV. This approach is expected to create various sizes of OV

arrays and paves the way for quantum entanglement and
quantum communications.

Funding. Ministry of Science and Technology, Taiwan
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